Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
JAMA Netw Open ; 6(5): e2310650, 2023 05 01.
Article in English | MEDLINE | ID: covidwho-2317193

ABSTRACT

Importance: Estimates of the rate of waning of vaccine effectiveness (VE) against COVID-19 are key to assess population levels of protection and future needs for booster doses to face the resurgence of epidemic waves. Objective: To quantify the progressive waning of VE associated with the Delta and Omicron variants of SARS-CoV-2 by number of received doses. Data Sources: PubMed and Web of Science were searched from the databases' inception to October 19, 2022, as well as reference lists of eligible articles. Preprints were included. Study Selection: Selected studies for this systematic review and meta-analysis were original articles reporting estimates of VE over time against laboratory-confirmed SARS-CoV-2 infection and symptomatic disease. Data Extraction and Synthesis: Estimates of VE at different time points from vaccination were retrieved from original studies. A secondary data analysis was performed to project VE at any time from last dose administration, improving the comparability across different studies and between the 2 considered variants. Pooled estimates were obtained from random-effects meta-analysis. Main Outcomes and Measures: Outcomes were VE against laboratory-confirmed Omicron or Delta infection and symptomatic disease and half-life and waning rate associated with vaccine-induced protection. Results: A total of 799 original articles and 149 reviews published in peer-reviewed journals and 35 preprints were identified. Of these, 40 studies were included in the analysis. Pooled estimates of VE of a primary vaccination cycle against laboratory-confirmed Omicron infection and symptomatic disease were both lower than 20% at 6 months from last dose administration. Booster doses restored VE to levels comparable to those acquired soon after the administration of the primary cycle. However, 9 months after booster administration, VE against Omicron was lower than 30% against laboratory-confirmed infection and symptomatic disease. The half-life of VE against symptomatic infection was estimated to be 87 days (95% CI, 67-129 days) for Omicron compared with 316 days (95% CI, 240-470 days) for Delta. Similar waning rates of VE were found for different age segments of the population. Conclusions and Relevance: These findings suggest that the effectiveness of COVID-19 vaccines against laboratory-confirmed Omicron or Delta infection and symptomatic disease rapidly wanes over time after the primary vaccination cycle and booster dose. These results can inform the design of appropriate targets and timing for future vaccination programs.


Subject(s)
COVID-19 , Hepatitis D , Humans , COVID-19 Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2
2.
Sci Rep ; 13(1): 5586, 2023 04 05.
Article in English | MEDLINE | ID: covidwho-2259910

ABSTRACT

The worldwide inequitable access to vaccination claims for a re-assessment of policies that could minimize the COVID-19 burden in low-income countries. Nine months after the launch of the national vaccination program in March 2021, only 3.4% of the Ethiopian population received two doses of COVID-19 vaccine. We used a SARS-CoV-2 transmission model to estimate the level of immunity accrued before the launch of vaccination in the Southwest Shewa Zone (SWSZ) and to evaluate the impact of alternative age priority vaccination targets in a context of limited vaccine supply. The model was informed with available epidemiological evidence and detailed contact data collected across different geographical settings (urban, rural, or remote). We found that, during the first year of the pandemic, the mean proportion of critical cases occurred in SWSZ attributable to infectors under 30 years of age would range between 24.9 and 48.0%, depending on the geographical setting. During the Delta wave, the contribution of this age group in causing critical cases was estimated to increase on average to 66.7-70.6%. Our findings suggest that, when considering the vaccine product available at the time (ChAdOx1 nCoV-19; 65% efficacy against infection after 2 doses), prioritizing the elderly for vaccination remained the best strategy to minimize the disease burden caused by Delta, irrespectively of the number of available doses. Vaccination of all individuals aged ≥ 50 years would have averted 40 (95%PI: 18-60), 90 (95%PI: 61-111), and 62 (95%PI: 21-108) critical cases per 100,000 residents in urban, rural, and remote areas, respectively. Vaccination of all individuals aged ≥ 30 years would have averted an average of 86-152 critical cases per 100,000 individuals, depending on the setting considered. Despite infections among children and young adults likely caused 70% of critical cases during the Delta wave in SWSZ, most vulnerable ages should remain a key priority target for vaccination against COVID-19.


Subject(s)
COVID-19 , Vaccines , Child , Aged , Young Adult , Humans , Adult , COVID-19 Vaccines , Ethiopia , ChAdOx1 nCoV-19 , SARS-CoV-2 , Vaccination
3.
Epidemiol Infect ; 151: e5, 2022 12 16.
Article in English | MEDLINE | ID: covidwho-2243074

ABSTRACT

Quantitative information on epidemiological quantities such as the incubation period and generation time of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants is scarce. We analysed a dataset collected during contact tracing activities in the province of Reggio Emilia, Italy, throughout 2021. We determined the distributions of the incubation period for the Alpha and Delta variants using information on negative polymerase chain reaction tests and the date of last exposure from 282 symptomatic cases. We estimated the distributions of the intrinsic generation time using a Bayesian inference approach applied to 9724 SARS-CoV-2 cases clustered in 3545 households where at least one secondary case was recorded. We estimated a mean incubation period of 4.9 days (95% credible intervals, CrI, 4.4-5.4) for Alpha and 4.5 days (95% CrI 4.0-5.0) for Delta. The intrinsic generation time was estimated to have a mean of 7.12 days (95% CrI 6.27-8.44) for Alpha and of 6.52 days (95% CrI 5.54-8.43) for Delta. The household serial interval was 2.43 days (95% CrI 2.29-2.58) for Alpha and 2.74 days (95% CrI 2.62-2.88) for Delta, and the estimated proportion of pre-symptomatic transmission was 48-51% for both variants. These results indicate limited differences in the incubation period and intrinsic generation time of SARS-CoV-2 variants Alpha and Delta compared to ancestral lineages.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Contact Tracing , Bayes Theorem , Infectious Disease Incubation Period
4.
Influenza Other Respir Viruses ; 2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-2232948

ABSTRACT

BACKGROUND: School closures and distance learning have been extensively adopted to counter the COVID-19 pandemic. However, the contribution of school transmission to the spread of SARS-CoV-2 remains poorly quantified. METHODS: We analyzed transmission patterns associated with 976 SARS-CoV-2 exposure events, involving 460 positive individuals, as identified in early 2021 through routine surveillance and an extensive screening conducted on students, school personnel, and their household members in a small Italian municipality. In addition to population screenings and contact-tracing operations, reactive closures of class and schools were implemented. RESULTS: From the analysis of 152 clear infection episodes and 584 exposure events identified by epidemiological investigations, we estimated that approximately 50%, 21%, and 29% of SARS-CoV-2 transmission was associated with household, school, and community contacts, respectively. We found substantial transmission heterogeneities, with 20% positive individuals causing 75% to 80% of ascertained infection episodes. A higher proportion of infected individuals causing onward transmission was found among students (46.2% vs. 25%, on average), who also caused a markedly higher number of secondary cases (mean: 1.03 vs. 0.35). By reconstructing likely transmission chains from the entire set of exposures identified during contact-tracing operations, we found that clusters originated from students or school personnel were associated with a larger average cluster size (3.32 vs. 1.15) and a larger average number of generations in the transmission chain (1.56 vs. 1.17). CONCLUSIONS: Uncontrolled SARS-CoV-2 transmission at school could disrupt the regular conduct of teaching activities, likely seeding the transmission into other settings, and increasing the burden on contact-tracing operations.

5.
Euro Surveill ; 27(45)2022 11.
Article in English | MEDLINE | ID: covidwho-2117835

ABSTRACT

BackgroundThe SARS-CoV-2 variant of concern Omicron was first detected in Italy in November 2021.AimTo comprehensively describe Omicron spread in Italy in the 2 subsequent months and its impact on the overall SARS-CoV-2 circulation at population level.MethodsWe analyse data from four genomic surveys conducted across the country between December 2021 and January 2022. Combining genomic sequencing results with epidemiological records collated by the National Integrated Surveillance System, the Omicron reproductive number and exponential growth rate are estimated, as well as SARS-CoV-2 transmissibility.ResultsOmicron became dominant in Italy less than 1 month after its first detection, representing on 3 January 76.9-80.2% of notified SARS-CoV-2 infections, with a doubling time of 2.7-3.3 days. As of 17 January 2022, Delta variant represented < 6% of cases. During the Omicron expansion in December 2021, the estimated mean net reproduction numbers respectively rose from 1.15 to a maximum of 1.83 for symptomatic cases and from 1.14 to 1.36 for hospitalised cases, while remaining relatively stable, between 0.93 and 1.21, for cases needing intensive care. Despite a reduction in relative proportion, Delta infections increased in absolute terms throughout December contributing to an increase in hospitalisations. A significant reproduction numbers' decline was found after mid-January, with average estimates dropping below 1 between 10 and 16 January 2022.ConclusionEstimates suggest a marked growth advantage of Omicron compared with Delta variant, but lower disease severity at population level possibly due to residual immunity against severe outcomes acquired from vaccination and prior infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Vaccination , Base Sequence
6.
Lancet Reg Health Eur ; 19: 100446, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1914781

ABSTRACT

Background: Starting from the final months of 2021, the SARS-CoV-2 Omicron variant expanded globally, swiftly replacing Delta, the variant that was dominant at the time. Many uncertainties remain about the epidemiology of Omicron; here, we aim to estimate its generation time. Methods: We used a Bayesian approach to analyze 23,122 SARS-CoV-2 infected individuals clustered in 8903 households as determined from contact tracing operations in Reggio Emilia, Italy, throughout January 2022. We estimated the distribution of the intrinsic generation time (the time between the infection dates of an infector and its secondary cases in a fully susceptible population), realized household generation time, realized serial interval (time between symptom onset of an infector and its secondary cases), and contribution of pre-symptomatic transmission. Findings: We estimated a mean intrinsic generation time of 6.84 days (95% credible intervals, CrI, 5.72-8.60), and a mean realized household generation time of 3.59 days (95%CrI: 3.55-3.60). The household serial interval was 2.38 days (95%CrI 2.30-2.47) with about 51% (95%CrI 45-56%) of infections caused by symptomatic individuals being generated before symptom onset. Interpretation: These results indicate that the intrinsic generation time of the SARS-CoV-2 Omicron variant might not have shortened as compared to previous estimates on ancestral lineages, Alpha and Delta, in the same geographic setting. Like for previous lineages, pre-symptomatic transmission appears to play a key role for Omicron transmission. Estimates in this study may be useful to design quarantine, isolation and contact tracing protocols and to support surveillance (e.g., for the accurate computation of reproduction numbers). Funding: The study was partially funded by EU grant 874850 MOOD.

7.
Epidemics ; 40: 100601, 2022 09.
Article in English | MEDLINE | ID: covidwho-1895034

ABSTRACT

BACKGROUND: After a rapid upsurge of COVID-19 cases in Italy during the fall of 2020, the government introduced a three-tiered restriction system aimed at increasing physical distancing. The Ministry of Health, after periodic epidemiological risk assessments, assigned a tier to each of the 21 Italian regions and autonomous provinces. It is still unclear to what extent these different sets of measures altered the number of daily interactions and the social mixing patterns. METHODS AND FINDINGS: We conducted a survey between July 2020 and March 2021 to monitor changes in social contact patterns among individuals in the metropolitan city of Milan, Italy, which was hardly hit by the second wave of the COVID-19 pandemic. The number of daily contacts during periods characterized by different levels of restrictions was analyzed through negative binomial regression models and age-specific contact matrices were estimated under the different tiers of restrictions. By relying on the empirically estimated mixing patterns, we quantified relative changes in SARS-CoV-2 transmission potential associated with the different tiers. As tighter restrictions were implemented during the fall of 2020, a progressive reduction in the mean number of daily contacts recorded by study participants was observed: from 15.9 % under mild restrictions (yellow tier), to 41.8 % under strong restrictions (red tier). Higher restrictions levels were also found to increase the relative contribution of contacts occurring within the household. The SARS-CoV-2 reproduction number was estimated to decrease by 17.1 % (95 %CI: 1.5-30.1), 25.1 % (95 %CI: 13.0-36.0) and 44.7 % (95 %CI: 33.9-53.0) under the yellow, orange, and red tiers, respectively. CONCLUSIONS: Our results give an important quantification of the expected contribution of different restriction levels in shaping social contacts and decreasing the transmission potential of SARS-CoV-2. These estimates can find an operational use in anticipating the effect that the implementation of these tiered restriction can have on SARS-CoV-2 reproduction number under an evolving epidemiological situation.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Family Characteristics , Humans , Pandemics , Surveys and Questionnaires
8.
Clin Infect Dis ; 74(5): 893-896, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1703879

ABSTRACT

We analyzed 221 coronavirus disease 2019 cases identified between June 2020 and January 2021 in 6074 individuals screened for immunoglobulin G antibodies in May 2020, representing 77% of residents of 5 Italian municipalities. The relative risk of developing symptomatic infection in seropositive participants was 0.055 (95% confidence interval, .014-.220).


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Immunoglobulin G , Reinfection
9.
Euro Surveill ; 27(5)2022 02.
Article in English | MEDLINE | ID: covidwho-1700766

ABSTRACT

BackgroundSeveral SARS-CoV-2 variants of concern (VOC) have emerged through 2020 and 2021. There is need for tools to estimate the relative transmissibility of emerging variants of SARS-CoV-2 with respect to circulating strains.AimWe aimed to assess the prevalence of co-circulating VOC in Italy and estimate their relative transmissibility.MethodsWe conducted two genomic surveillance surveys on 18 February and 18 March 2021 across the whole Italian territory covering 3,243 clinical samples and developed a mathematical model that describes the dynamics of co-circulating strains.ResultsThe Alpha variant was already dominant on 18 February in a majority of regions/autonomous provinces (national prevalence: 54%) and almost completely replaced historical lineages by 18 March (dominant across Italy, national prevalence: 86%). We found a substantial proportion of the Gamma variant on 18 February, almost exclusively in central Italy (prevalence: 19%), which remained similar on 18 March. Nationally, the mean relative transmissibility of Alpha ranged at 1.55-1.57 times the level of historical lineages (95% CrI: 1.45-1.66). The relative transmissibility of Gamma varied according to the assumed degree of cross-protection from infection with other lineages and ranged from 1.12 (95% CrI: 1.03-1.23) with complete immune evasion to 1.39 (95% CrI: 1.26-1.56) for complete cross-protection.ConclusionWe assessed the relative advantage of competing viral strains, using a mathematical model assuming different degrees of cross-protection. We found substantial co-circulation of Alpha and Gamma in Italy. Gamma was not able to outcompete Alpha, probably because of its lower transmissibility.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Italy/epidemiology , Models, Theoretical
10.
Nat Commun ; 13(1): 322, 2022 01 14.
Article in English | MEDLINE | ID: covidwho-1625443

ABSTRACT

There are contrasting results concerning the effect of reactive school closure on SARS-CoV-2 transmission. To shed light on this controversy, we developed a data-driven computational model of SARS-CoV-2 transmission. We found that by reactively closing classes based on syndromic surveillance, SARS-CoV-2 infections are reduced by no more than 17.3% (95%CI: 8.0-26.8%), due to the low probability of timely identification of infections in the young population. We thus investigated an alternative triggering mechanism based on repeated screening of students using antigen tests. Depending on the contribution of schools to transmission, this strategy can greatly reduce COVID-19 burden even when school contribution to transmission and immunity in the population is low. Moving forward, the adoption of antigen-based screenings in schools could be instrumental to limit COVID-19 burden while vaccines continue to be rolled out.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Models, Statistical , Quarantine/organization & administration , SARS-CoV-2/pathogenicity , Schools/organization & administration , COVID-19/diagnosis , COVID-19/transmission , COVID-19 Serological Testing , Computer Simulation , Humans , Italy/epidemiology , Mass Screening/trends , Physical Distancing , SARS-CoV-2/growth & development , SARS-CoV-2/immunology , Schools/legislation & jurisprudence , Students/legislation & jurisprudence
11.
Am J Epidemiol ; 191(1): 137-146, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1621545

ABSTRACT

During the spring of 2020, the coronavirus disease 2019 (COVID-19) epidemic caused an unprecedented demand for intensive-care resources in the Lombardy region of Italy. Using data on 43,538 hospitalized patients admitted between February 21 and July 12, 2020, we evaluated variations in intensive care unit (ICU) admissions and mortality over the course of 3 periods: the early phase of the pandemic (February 21-March 13), the period of highest pressure on the health-care system (March 14-April 25, when numbers of COVID-19 patients exceeded prepandemic ICU bed capacity), and the declining phase (April 26-July 12). Compared with the early phase, patients aged 70 years or more were less often admitted to an ICU during the period of highest pressure on the health-care system (odds ratio (OR) = 0.47, 95% confidence interval (CI): 0.41, 0.54), with longer ICU delays (incidence rate ratio = 1.82, 95% CI: 1.52, 2.18) and lower chances of dying in the ICU (OR = 0.47, 95% CI: 0.34, 0.64). Patients under 56 years of age had more limited changes in the probability of (OR = 0.65, 95% CI: 0.56, 0.76) and delay to (incidence rate ratio = 1.16, 95% CI: 0.95, 1.42) ICU admission and increased mortality (OR = 1.43, 95% CI: 1.00, 2.07). In the declining phase, all quantities decreased for all age groups. These patterns may suggest that limited health-care resources during the peak phase of the epidemic in Lombardy forced a shift in ICU admission criteria to prioritize patients with higher chances of survival.


Subject(s)
COVID-19/epidemiology , COVID-19/therapy , Delivery of Health Care/statistics & numerical data , Intensive Care Units/statistics & numerical data , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/mortality , Comorbidity , Humans , Italy/epidemiology , Middle Aged , Pandemics , Retrospective Studies , Risk Factors , SARS-CoV-2 , Sex Factors , Time Factors
12.
Nat Commun ; 12(1): 7272, 2021 12 14.
Article in English | MEDLINE | ID: covidwho-1574987

ABSTRACT

COVID-19 vaccination is allowing a progressive release of restrictions worldwide. Using a mathematical model, we assess the impact of vaccination in Italy since December 27, 2020 and evaluate prospects for societal reopening after emergence of the Delta variant. We estimate that by June 30, 2021, COVID-19 vaccination allowed the resumption of about half of pre-pandemic social contacts. In absence of vaccination, the same number of cases is obtained by resuming only about one third of pre-pandemic contacts, with about 12,100 (95% CI: 6,600-21,000) extra deaths (+27%; 95% CI: 15-47%). Vaccination offset the effect of the Delta variant in summer 2021. The future epidemic trend is surrounded by substantial uncertainty. Should a pediatric vaccine (for ages 5 and older) be licensed and a coverage >90% be achieved in all age classes, a return to pre-pandemic society could be envisioned. Increasing vaccination coverage will allow further reopening even in absence of a pediatric vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Vaccination , Adolescent , Child , Child, Preschool , Humans , Italy , Models, Theoretical , Pandemics , SARS-CoV-2 , Vaccination Coverage
13.
Epidemics ; 37: 100528, 2021 12.
Article in English | MEDLINE | ID: covidwho-1520903

ABSTRACT

BACKGROUND: In the night of February 20, 2020, the first epidemic of the novel coronavirus disease (COVID-19) outside Asia was uncovered by the identification of its first patient in Lombardy region, Italy. In the following weeks, Lombardy experienced a sudden increase in the number of ascertained infections and strict measures were imposed to contain the epidemic spread. METHODS: We analyzed official records of cases occurred in Lombardy to characterize the epidemiology of SARS-CoV-2 during the early phase of the outbreak. A line list of laboratory-confirmed cases was set up and later retrospectively consolidated, using standardized interviews to ascertained cases and their close contacts. We provide estimates of the serial interval, of the basic reproduction number, and of the temporal variation of the net reproduction number of SARS-CoV-2. RESULTS: Epidemiological investigations detected over 500 cases (median age: 69, IQR: 57-78) before the first COVID-19 diagnosed patient (February 20, 2020), and suggested that SARS-CoV-2 was already circulating in at least 222 out of 1506 (14.7%) municipalities with sustained transmission across all the Lombardy provinces. We estimated the mean serial interval to be 6.6 days (95% CrI, 0.7-19). Our estimates of the basic reproduction number range from 2.6 in Pavia (95% CI, 2.1-3.2) to 3.3 in Milan (95% CI, 2.9-3.8). A decreasing trend in the net reproduction number was observed following the detection of the first case. CONCLUSIONS: At the time of first case notification, COVID-19 was already widespread in the entire Lombardy region. This may explain the large number of critical cases experienced by this region in a very short timeframe. The slight decrease of the reproduction number observed in the early days after February 20, 2020 might be due to increased population awareness and early interventions implemented before the regional lockdown imposed on March 8, 2020.


Subject(s)
COVID-19 , Aged , Communicable Disease Control , Humans , Italy/epidemiology , Retrospective Studies , SARS-CoV-2
14.
Epidemics ; 37: 100530, 2021 12.
Article in English | MEDLINE | ID: covidwho-1517154

ABSTRACT

Solid estimates describing the clinical course of SARS-CoV-2 infections are still lacking due to under-ascertainment of asymptomatic and mild-disease cases. In this work, we quantify age-specific probabilities of transitions between stages defining the natural history of SARS-CoV-2 infection from 1965 SARS-CoV-2 positive individuals identified in Italy between March and April 2020 among contacts of confirmed cases. Infected contacts of cases were confirmed via RT-PCR tests as part of contact tracing activities or retrospectively via IgG serological tests and followed-up for symptoms and clinical outcomes. In addition, we provide estimates of time intervals between key events defining the clinical progression of cases as obtained from a larger sample, consisting of 95,371 infections ascertained between February and July 2020. We found that being older than 60 years of age was associated with a 39.9% (95%CI: 36.2-43.6%) likelihood of developing respiratory symptoms or fever ≥ 37.5 °C after SARS-CoV-2 infection; the 22.3% (95%CI: 19.3-25.6%) of the infections in this age group required hospital care and the 1% (95%CI: 0.4-2.1%) were admitted to an intensive care unit (ICU). The corresponding proportions in individuals younger than 60 years were estimated at 27.9% (95%CI: 25.4-30.4%), 8.8% (95%CI: 7.3-10.5%) and 0.4% (95%CI: 0.1-0.9%), respectively. The infection fatality ratio (IFR) ranged from 0.2% (95%CI: 0.0-0.6%) in individuals younger than 60 years to 12.3% (95%CI: 6.9-19.7%) for those aged 80 years or more; the case fatality ratio (CFR) in these two age classes was 0.6% (95%CI: 0.1-2%) and 19.2% (95%CI: 10.9-30.1%), respectively. The median length of stay in hospital was 10 (IQR: 3-21) days; the length of stay in ICU was 11 (IQR: 6-19) days. The obtained estimates provide insights into the epidemiology of COVID-19 and could be instrumental to refine mathematical modeling work supporting public health decisions.


Subject(s)
COVID-19 , Contact Tracing , Humans , Public Health , Retrospective Studies , SARS-CoV-2
15.
Nat Commun ; 12(1): 4570, 2021 07 27.
Article in English | MEDLINE | ID: covidwho-1328847

ABSTRACT

To counter the second COVID-19 wave in autumn 2020, the Italian government introduced a system of physical distancing measures organized in progressively restrictive tiers (coded as yellow, orange, and red) imposed on a regional basis according to real-time epidemiological risk assessments. We leverage the data from the Italian COVID-19 integrated surveillance system and publicly available mobility data to evaluate the impact of the three-tiered regional restriction system on human activities, SARS-CoV-2 transmissibility and hospitalization burden in Italy. The individuals' attendance to locations outside the residential settings was progressively reduced with tiers, but less than during the national lockdown against the first COVID-19 wave in the spring. The reproduction number R(t) decreased below the epidemic threshold in 85 out of 107 provinces after the introduction of the tier system, reaching average values of about 0.95-1.02 in the yellow tier, 0.80-0.93 in the orange tier and 0.74-0.83 in the red tier. We estimate that the reduced transmissibility resulted in averting about 36% of the hospitalizations between November 6 and November 25, 2020. These results are instrumental to inform public health efforts aimed at preventing future resurgence of cases.


Subject(s)
COVID-19/epidemiology , Communicable Disease Control , Humans , Italy/epidemiology , SARS-CoV-2/pathogenicity
16.
JAMA Netw Open ; 4(7): e2115699, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1296685

ABSTRACT

Importance: Identifying health care settings and professionals at increased risk of SARS-CoV-2 infection is crucial to defining appropriate strategies, resource allocation, and protocols to protect health care workers (HCWs) and patients. Moreover, such information is crucial to decrease the risk that HCWs and health care facilities become amplifiers for SARS-CoV-2 transmission in the community. Objective: To assess the association of different health care professional categories and operational units, including in-hospital wards, outpatient facilities, and territorial care departments, with seroprevalence and odds of SARS-CoV-2 infection. Design, Setting, and Participants: This cross-sectional study was conducted using IgG serological tests collected from April 1 through May 26, 2020, in the Lombardy region in Italy. Voluntary serological screening was offered to all clinical and nonclinical staff providing any health care services or support to health care services in the region. Data were analyzed from June 2020 through April 2021. Exposures: Employment in the health care sector. Main Outcomes and Measures: Seroprevalence of positive IgG antibody tests for SARS-CoV-2 was collected, and odds ratios of experiencing infection were calculated. Results: A total of 140 782 professionals employed in the health sector were invited to participate in IgG serological screening, among whom 82 961 individuals (59.0% response rate) were tested for SARS-CoV-2 antibodies, with median (interquartile range [IQR]; range) age, 50 (40-56; 19-83) years and 59 839 (72.1%) women. Among these individuals, 10 115 HCWs (12.2%; 95% CI, 12.0%-12.4%) had positive results (median [IQR; range] age, 50 [39-55; 20-80] years; 7298 [72.2%] women). Statistically significantly higher odds of infection were found among health assistants (adjusted odds ratio [aOR], 1.48; 95% CI, 1.33-1.65) and nurses (aOR, 1.28; 95% CI, 1.17-1.41) compared with administrative staff and among workers employed in internal medicine (aOR, 2.24; 95% CI, 1.87-2.68), palliative care (aOR, 1.84; 95% CI, 1.38-2.44), rehabilitation (aOR, 1.59; 95% CI, 1.33-1.91), and emergency departments (aOR, 1.56; 95% CI, 1.29-1.89) compared with those working as telephone operators. Statistically significantly lower odds of infection were found among individuals working in forensic medicine (aOR, 0.40; 95% CI, 0.19-0.88), histology and anatomical pathology (aOR, 0.71; 95% CI, 0.52-0.97), and medical device sterilization (aOR, 0.54; 95% CI, 0.35-0.84) compared with those working as telephone operators. The odds of infection for physicians and laboratory personnel were not statistically significantly different from those found among administrative staff. The odds of infection for workers employed in intensive care units and infectious disease wards were not statistically significantly different from those of telephone operators. Conclusions and Relevance: These findings suggest that professionals partially accustomed to managing infectious diseases had higher odds of SARS-CoV-2 infection. The findings further suggest that adequate organization of clinical wards and personnel, appropriate personal protective equipment supply, and training of all workers directly and repeatedly exposed to patients with clinical or subclinical COVID-19 should be prioritized to decrease the risk of infection in health care settings.


Subject(s)
COVID-19/epidemiology , Health Personnel , Occupational Exposure/adverse effects , Pandemics , Adult , COVID-19/blood , COVID-19/virology , Cross-Sectional Studies , Female , Humans , Immunoglobulin G/blood , Infection Control , Italy , Male , Middle Aged , Personal Protective Equipment , Risk Factors , SARS-CoV-2 , Seroepidemiologic Studies
17.
Nat Hum Behav ; 5(8): 1009-1020, 2021 08.
Article in English | MEDLINE | ID: covidwho-1279881

ABSTRACT

COVID-19 vaccination is being conducted in over 200 countries and regions to control SARS-CoV-2 transmission and return to a pre-pandemic lifestyle. However, understanding when non-pharmaceutical interventions (NPIs) can be lifted as immunity builds up remains a key question for policy makers. To address this, we built a data-driven model of SARS-CoV-2 transmission for China. We estimated that, to prevent the escalation of local outbreaks to widespread epidemics, stringent NPIs need to remain in place at least one year after the start of vaccination. Should NPIs alone be capable of keeping the reproduction number (Rt) around 1.3, the synergetic effect of NPIs and vaccination could reduce the COVID-19 burden by up to 99% and bring Rt below the epidemic threshold in about 9 months. Maintaining strict NPIs throughout 2021 is of paramount importance to reduce COVID-19 burden while vaccines are distributed to the population, especially in large populations with little natural immunity.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , COVID-19/transmission , Vaccination , China , Disease Outbreaks/prevention & control , Humans
18.
BMC Med ; 19(1): 89, 2021 04 09.
Article in English | MEDLINE | ID: covidwho-1175322

ABSTRACT

BACKGROUND: COVID-19 spread may have a dramatic impact in countries with vulnerable economies and limited availability of, and access to, healthcare resources and infrastructures. However, in sub-Saharan Africa, a low prevalence and mortality have been observed so far. METHODS: We collected data on individuals' social contacts in the South West Shewa Zone (SWSZ) of Ethiopia across geographical contexts characterized by heterogeneous population density, work and travel opportunities, and access to primary care. We assessed how socio-demographic factors and observed mixing patterns can influence the COVID-19 disease burden, by simulating SARS-CoV-2 transmission in remote settlements, rural villages, and urban neighborhoods, under school closure mandate. RESULTS: From national surveillance data, we estimated a net reproduction number of 1.62 (95% CI 1.55-1.70). We found that, at the end of an epidemic mitigated by school closure alone, 10-15% of the population residing in the SWSZ would have been symptomatic and 0.3-0.4% of the population would require mechanical ventilation and/or possibly result in a fatal outcome. Higher infection attack rates are expected in more urbanized areas, but the highest incidence of critical disease is expected in remote subsistence farming settlements. School closure contributed to reduce the reproduction number by 49% and the attack rate of infections by 28-34%. CONCLUSIONS: Our results suggest that the relatively low burden of COVID-19 in Ethiopia observed so far may depend on social mixing patterns, underlying demography, and the enacted school closures. Our findings highlight that socio-demographic factors can also determine marked heterogeneities across different geographical contexts within the same region, and they contribute to understand why sub-Saharan Africa is experiencing a relatively lower attack rate of severe cases compared to high-income countries.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Quarantine/trends , SARS-CoV-2/isolation & purification , Schools/trends , Social Interaction , Adolescent , Adult , COVID-19/prevention & control , Child , Child, Preschool , Ethiopia/epidemiology , Female , Humans , Male , Middle Aged , Young Adult
19.
JAMA Netw Open ; 4(3): e211085, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1125122

ABSTRACT

Importance: Solid estimates of the risk of developing symptoms and of progressing to critical disease in individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are key to interpreting coronavirus disease 2019 (COVID-19) dynamics, identifying the settings and the segments of the population where transmission is more likely to remain undetected, and defining effective control strategies. Objective: To estimate the association of age with the likelihood of developing symptoms and the association of age with the likelihood of progressing to critical illness after SARS-CoV-2 infection. Design, Setting, and Participants: This cohort study analyzed quarantined case contacts, identified between February 20 and April 16, 2020, in the Lombardy region of Italy. Contacts were monitored daily for symptoms and tested for SARS-CoV-2 infection, by either real-time reverse transcriptase-polymerase chain reaction using nasopharyngeal swabs or retrospectively via IgG serological assays. Close contacts of individuals with laboratory-confirmed COVID-19 were selected as those belonging to clusters (ie, groups of contacts associated with an index case) where all individuals were followed up for symptoms and tested for SARS-CoV-2 infection. Data were analyzed from February to June 2020. Exposure: Close contact with individuals with confirmed COVID-19 cases as identified by contact tracing operations. Main Outcomes and Measures: Age-specific estimates of the risk of developing respiratory symptoms or fever greater than or equal to 37.5 °C and of experiencing critical disease (defined as requiring intensive care or resulting in death) in SARS-CoV-2-infected case contacts. Results: In total, 5484 case contacts (median [interquartile range] age, 50 [30-61] years; 3086 female contacts [56.3%]) were analyzed, 2824 of whom (51.5%) tested positive for SARS-CoV-2 (median [interquartile range] age, 53 [34-64] years; 1604 female contacts [56.8%]). The proportion of infected persons who developed symptoms ranged from 18.1% (95% CI, 13.9%-22.9%) among participants younger than 20 years to 64.6% (95% CI, 56.6%-72.0%) for those aged 80 years or older. Most infected contacts (1948 of 2824 individuals [69.0%]) did not develop respiratory symptoms or fever greater than or equal to 37.5 °C. Only 26.1% (95% CI, 24.1%-28.2%) of infected individuals younger than 60 years developed respiratory symptoms or fever greater than or equal to 37.5 °C; among infected participants older than 60 years, 6.6% (95% CI, 5.1%-8.3%) developed critical disease. Female patients were 52.7% (95% CI, 24.4%-70.7%) less likely than male patients to develop critical disease after SARS-CoV-2 infection. Conclusions and Relevance: In this Italian cohort study of close contacts of patients with confirmed SARS-CoV-2 infection, more than one-half of individuals tested positive for the virus. However, most infected individuals did not develop respiratory symptoms or fever. The low proportion of children and young adults who developed symptoms highlights the possible challenges in readily identifying SARS-CoV-2 infections.


Subject(s)
COVID-19/physiopathology , Carrier State/epidemiology , Cough/epidemiology , Dyspnea/epidemiology , Fever/epidemiology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Chest Pain/epidemiology , Chest Pain/physiopathology , Child , Child, Preschool , Contact Tracing , Cough/physiopathology , Critical Illness , Disease Progression , Dyspnea/physiopathology , Female , Fever/physiopathology , Humans , Infant , Infant, Newborn , Italy/epidemiology , Male , Middle Aged , Pharyngitis/epidemiology , Pharyngitis/physiopathology , Quarantine , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Tachypnea/epidemiology , Tachypnea/physiopathology , Young Adult
20.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: covidwho-1061479

ABSTRACT

After the national lockdown imposed on March 11, 2020, the Italian government has gradually resumed the suspended economic and social activities since May 4, while maintaining the closure of schools until September 14. We use a model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission to estimate the health impact of different exit strategies. The strategy adopted in Italy kept the reproduction number Rt at values close to one until the end of September, with marginal regional differences. Based on the estimated postlockdown transmissibility, reopening of workplaces in selected industrial activities might have had a minor impact on the transmissibility. Reopening educational levels in May up to secondary schools might have influenced SARS-CoV-2 transmissibility only marginally; however, including high schools might have resulted in a marked increase of the disease burden. Earlier reopening would have resulted in disproportionately higher hospitalization incidence. Given community contacts in September, we project a large second wave associated with school reopening in the fall.


Subject(s)
COVID-19/prevention & control , Communicable Disease Control/methods , Quarantine/methods , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Hospitalization , Humans , Italy/epidemiology , Models, Theoretical , Pandemics , Physical Distancing , Retrospective Studies , SARS-CoV-2/isolation & purification , Schools
SELECTION OF CITATIONS
SEARCH DETAIL